
LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

Objectives 

In this Lecture you will learn: 

• How to derive a set of relations from a conceptual data model. 

• How to validate a logical data model to ensure it supports the required transactions. 

• How to ensure that the final logical data model is a true and accurate representation  

    of the data requirements of the enterprise. 

1. Introduction  

     In the previous lecture we introduced a methodology that describes the steps that 
make up the three phases of database design and then presented Step 1 of this 
methodology for conceptual database design.  
     In this lecture we describe Step 2 of the methodology, which translates the conceptual 
model produced in Step 1 into a logical data model. 
 

 
Fig. 1 . The final ER of Conceptual Database Desing steps. 

 
 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

 

2. Logical Database Design Methodology for the Relational Model 

OBJECTIVE:  

• To translate the conceptual data model into a logical data model. 

• To validate this model and check that it is structurally correct and able to support 
the required transactions. 

This objective is achieved by following these activities: 
Step 1: Derive relations for logical data model. 
Step 2: Check integrity constraints. 
Step 3: Validate relations against user transactions. 
Step 4: Review logical data model with user. 

 

Step 1: Derive relations for logical data model 

Objective: To create relations for the logical data model to represent the entities, 
relationships, and attributes that have been identified. 
 

• The relationship that an entity has with another entity is represented by the 

primary key/ foreign key mechanism. 

•  We must first identify the “parent” and “child” entities involved in the 
relationship.  

• The parent entity refers to the entity that posts a copy of its primary key into the 
relation that represents the child entity, to act as the foreign key. 

•  We describe how relations are derived for the following structures that may occur 
in a conceptual data model: 

(1) strong entity types; 
(2) weak entity types; 
(3) one-to-many (1:*) binary relationship types; 
(4) one-to-one (1:1) binary relationship types; 
(5) one-to-one (1:1) recursive relationship types; 
(6) superclass/subclass relationship types; 
(7) many-to-many (*:*) binary relationship types; 
(8) complex relationship types; 
(9) multi-valued attributes. 

 
(1) Strong entity types 
    For each strong entity in the data model, create a relation that includes all the simple 
attributes of that entity. 
 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

 

(2) Weak entity types 

• For each strong entity in the data model, create a relation that includes all the 
simple attributes of that entity. 
 

• The identification of the primary key of a weak entity cannot be made until after all 
the relationships with the owner entities have been mapped 

 
 

(3) One-to-many (1:*) binary relationship types 

• The entity on the “one side” of the relationship is designated as the parent entity. 

• The entity on the “many side” is designated as the child entity. Thus, we post a 
copy of the primary key attribute(s) of the parent entity into the relation 
representing the child entity, to act as a foreign key. 
 

 

(4) One-to-one (1:1) binary relationship types 

• Creating relations to represent a 1:1 relationship is slightly more complex.  

 

• The cardinality cannot be used to help identify the parent and child entities in a 

relationship. Instead, the participation constraints: We consider how to create 

relations to represent the following participation constraints: 

(a) mandatory participation on both sides of 1:1 relationship; 

(b) mandatory participation on one side of 1:1 relationship; 

(c) optional participation on both sides of 1:1 relationship; 

(a) Mandatory participation on both sides of 1:1 relationship  

we should combine the entities involved into one relation. Choose one of the 
primary keys of the original entities to be the primary key of the new relation. 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

Example : The Client States Preference relationship is an example of a 1:1 relationship 
with mandatory participation on both sides. In this case, we choose to merge the two 
relations together to give the following Client relation: 
 

 
Note that it is possible to merge two entities into one relation only when there are no 
other direct relationships between these two entities that would prevent this, such as a 
1:* relationship. 
 
(b) Mandatory participation on one side of a 1:1 relationship 

• In this case we are able to identify the parent and child entities for the 1:1 
relationship using the participation constraints. 

• The entity that has optional participation in the relationship is designated as the 
parent entity. 

• The entity that has mandatory participation is designated as the child entity.  

• The idea is to prevent nulls in case if we combine the two in one relation. 
 
Example:  if the 1:1 Client States Preference relationship had partial participation on the 
Client side (not every client specifies preferences), then the Client entity would be 
designated as the parent entity and the Preference entity would be designated as the 
child entity.   
 

 
 

(c) Optional participation on both sides of a 1:1 relationship 

• In this case the designation of the parent and child entities is arbitrary unless we 
can find out more about the relationship that can help us make. 
 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

(6) Superclass/subclass relationship types 

• For each superclass/subclass relationship in the conceptual data model, we 
identify the superclass entity as the parent entity and the subclass entity as the 
child entity. 

• There are various options on how to represent such a relationship as one or more 
relations. 

• In this case the most appropriate representation of the superclass/subclass 
relationship is determined by the constraints on this relationship. 
 
Table 1.  Guidelines for the representation of a superclass/subclass relationship based on the 
participation and disjoint constraints. 

 

 
 

     Example, consider the Owner superclass/subclass relationship, there are 
various ways to represent this relationship as one or more relations. 
     The options range from: Placing all the attributes into one relation with two 

discriminators pOwnerFlag and bOwnerFlag indicating whether a tuple belongs 
to a particular subclass (Option 1), to dividing the attributes into three relations 
(Option 4).  
 

• The relationship that the Owner superclass has with its subclasses is 
mandatory and disjoint (each member of the Owner superclass must be a 
member of one of the subclasses (PrivateOwner or BusinessOwner) but 
cannot belong to both).  We therefore select Option 3.  

• Create a separate relation to represent each subclass, and include a copy 
of the primary key attribute(s) of the superclass in each. 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

 
Fig. 2.  Super/sub classes relations. 

  

 
Fig. 3. Various representations of the Owner superclass/ subclass relationship based on the participation 

and disjointness constraints shown in Table1. 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

(7) Many-to-many (*:*) binary relationship types 

For each *:* binary relationship, 

• create a relation to represent the relationship and include any attributes that are 
part of the relationship. 
 

• We post a copy of the primary key attribute(s) of the entities that participate in the 
relationship into the new relation, to act as foreign keys.  

 

• One or both of these foreign keys will also form the primary key of the new relation 
 
 

Example, consider the *:* relationship Client Views PropertyForRent. 

• The Views relationship has two attributes called dateView and comments. 

• We create relations for the strong entities Client and PropertyForRent. 

• We create a relation Viewing to represent the relationship 
Views, to give 

 

 
 

(8) Complex relationship types 

• Create a relation to represent the relationship and include any attributes that are 
part of the relationship. 
 

• We post a copy of the primary key attribute(s) of the entities that participate in the 
complex relationship into the new relation, to act as foreign keys. 
 

 
• Any foreign keys that represent a “many” relationship (for example, 1..*, 0..*) 

generally will also form the primary key of this new relation, possibly in combination 
with some of the attributes of the relationship. 
 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

Example: the ternary Registers relationship in the Branch user views represents the 

association between the member of staff who registers a new client at a branch, as 
shown in Figure .  To represent this, we create relations for the strong entities Branch, 
Staff, and Client, and we create a relation Registration to represent the relationship 
Registers, to give: 
 

 

Fig. 4. Register as a complex relationship example. 

 

 
 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

(9) Multi-valued attributes 

For each multi-valued attribute in an entity: 

• Create a new relation to represent the multi-valued attribute. 
• Include the primary key of the entity in the new relation to act as a foreign key. 

 

Example: 

• In the Branch user views to represent the situation where a single branch has up 
to three telephone numbers. 

• The telNo attribute of the Branch entity has been defined as being a multi-valued 
attribute. 

 
 
Table 2 Summary of how to map entities and relationships to relations. 

 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

 

Fig. 5. Step 1 Output. 

Step 2: Check integrity constraints 

Objective To check whether integrity constraints are represented in the logical data 
model. 
 
     Integrity constraints are the constraints that we wish to impose in order to protect 
the database from becoming incomplete, inaccurate, or inconsistent.  
We consider the following types of integrity constraint: 
 
• required data; 
• attribute domain constraints; 
• multiplicity; 
• entity integrity; 
• referential integrity; 
 
 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

 
I. Required data: 

 Some attributes must always contain a valid value; in other words, they are not 
allowed to hold nulls. 
 

II. Attribute domain constraints: Every attribute has a domain, that is, a set of values 
that are legal. For example, the sex of a member of staff is either “M” or “F,” so the 
domain of the sex attribute is a single character string consisting of “M” or “F.” 
These constraints should have been identified when we chose the attribute 
domains for the data model (Step 4 in Conceptual database design). 
 

III. Multiplicity represents the constraints that are placed on relationships between 
data in the database. 
 

IV. Entity integrity: The primary key of an entity cannot hold nulls. For example, each 
tuple of the Staff relation must have a value for the primary key attribute, staffNo. 
These constraints should have been considered when we identified the primary 
keys for each entity type (Step 5 in conceptual database design). 
 

V. Referential integrity 
 

• A foreign key links each tuple in the child relation to the tuple in the parent relation 
containing the matching primary key value. 

• Referential integrity means that if the foreign key contains a value, that value must 
refer to an existing tuple in the parent relation. 
 

• There are two issues regarding foreign keys that must be addressed: 
1. The first considers whether nulls are allowed for the foreign key. 

For example, can we store the details of a property for rent without having a 
member of staff specified to manage it—that is, can we specify a null staffNo? 
The issue is not whether the staff number exists, but whether a staff number 
must be specified.  
In general, if the participation of the child relation in the relationship is: 
• mandatory, then nulls are not allowed; 

• optional, then nulls are allowed. 

2. The second issue we must address is how to ensure referential integrity. we 

specify existence constraints that define conditions under which a primary key 

or foreign key may be inserted, updated, or deleted. 

For the 1:* Staff Manages PropertyForRent relationship, consider the following 

cases. 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

Case 1: Insert tuple into child relation (PropertyForRent):  To ensure referential 
integrity, check that the foreign key attribute, staffNo, of the new PropertyForRent 

tuple is set to null or to a value of an existing Staff tuple. 
 

Case 2: Delete tuple from child relation (PropertyForRent):  If a tuple of a child 

relation is deleted referential integrity is unaffected. 

 
Case 3: Update foreign key of child tuple (PropertyForRent):  This case is similar 

to Case 1. To ensure referential integrity, check whether the staffNo of the updated 

PropertyForRent tuple is set to null or to a value of an existing Staff tuple. 

 
Case 4: Insert tuple into parent relation (Staff):  Inserting a tuple into the parent 

relation (Staff) does not affect referential integrity; it simply becomes a parent with- 
out any children: in other words, a member of staff without properties to manage. 

 
Case 5: Delete tuple from parent relation (Staff):  If a tuple of a parent relation is 
deleted, referential integrity is lost.  There are several strategies we can consider: 

NO ACTION—Prevent a deletion from the parent relation if there are any 
referenced child tuples. In our example, “You cannot delete a member of staff if he 
or she currently manages any properties.” 

 

CASCADE—When the parent tuple is deleted, automatically delete any 
referenced child tuples. If any deleted child tuple acts as the parent in another 
relationship, then the delete operation should be applied to the tuples in this child 
relation, and so on in a cascading manner.  

 

SET NULL—When a parent tuple is deleted, the foreign key values in all 
corresponding child tuples are automatically set to null.  

 

SET DEFAULT—When a parent tuple is deleted, the foreign key values in all 
corresponding child tuples should automatically be set to their default values.  

 

NO CHECK—When a parent tuple is deleted, do nothing to ensure that referential 
integrity is maintained. 

 
Case 6: Update primary key of parent tuple (Staff):  If the primary key value of a 

parent relation tuple is updated, referential integrity is lost if there exists a child ld 
primary key value; that is, if the updated member of staff currently manages one or 
more properties. To ensure referential integrity, the strategies described earlier can be 

used. In the case of CASCADE, the updates to the primary key of the parent tuple are 
reflected in any referencing child tuples, and if a referencing child tuple is itself a 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

primary key of a parent tuple, this update will also cascade to its referencing child 
tuples, and so on in a cascading manner. It is normal for updates to be specified as 

CASCADE. 

 
Fig6.  Referential integrity constraints for the relations in the StaffClient user views of 
DreamHome. 
 

Step 3: Validate relations against user transactions. 

Objective To ensure that the relations in the logical data model support the required 
transactions. 
    The objective of this step is to validate the logical data model to ensure that the model 
supports the required transactions. This type of check was carried out in Step 8 to ensure 
that the conceptual data model supported the required transactions. 
 
 
 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

Step 4: Review logical data model with user 
 
Objective To review the logical data model with the users to ensure that they consider 
the model to be a true representation of the data requirements of the enterprise. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Final Logical Database Design. 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

Checkpoints 

I. The University Accommodation Office case study 

Create and validate a logical data model from the conceptual data model for 
the University Accommodation Office case study created in previous  Exercise. 

 
II. The EasyDrive School of Motoring case study 

Create and validate a logical data model from the conceptual data model for 
the EasyDrive School of Motoring case study created in previous  Exercise. 

 
III. The Wellmeadows Hospital case study 

Create and validate the local logical data models for each of the local 
conceptual data models of the Wellmeadows Hospital case study created in 
previous  Exercise. 

 

IV. The Parking Lot case study 

                 Describe the relational schema of the Parking Lot EER model, and redraw the   
                 Figure. 
 

 

Fig. 8. Parking lot ER. 

V. The Library case stud 

Describe the relational schema mapped from the Library EER model, and 
redraw the Figure. 
 

 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

 
Fig. 9. Library ER. 

VI. The ER diagram in Fig. 9 shows only entities and primary key attributes. The 
absence of recognizable named entities or relationships is to emphasize the rule-
based nature of the mapping rules described previously in Step 1 of logical 
database design. 

 

Fig. 9. An example ER model. 

Answer the following questions with reference to how the ER model in Fig. 9 maps to 
relational tables. 
(a) How many relations will represent the ER model? 
(b) How many foreign keys are mapped to the relation representing X? 



LEC 3              Logical DB Design 
 

Assist Lec. Mohammed Dheyaa Badr 

DBMS University of Basrah  

College of CS & IT 

 

Second semester 2023-2024 

(c) Which relation(s) will have no foreign key? 
(d) Using only the letter identifier for each entity, provide appropriate names for the 
relation mapped from the ER model. 
(e) If the cardinality for each relationship is changed to one-to-one with total participation 
for all entities, how many relations would be derived from this version of the ER model? 
 


